一、题目
2698:八皇后问题
原题链接:http://poj.grids.cn/practice/2698/
- 时间限制:
- 10000ms 内存限制:
- 65536kB
- 描述
- 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方。 输入
- 无输入。 输出
- 按给定顺序和格式输出所有八皇后问题的解(见Sample Output)。 样例输入
- 样例输出
-
No. 11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 No. 21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 No. 31 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 No. 41 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 No. 50 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 No. 60 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 No. 70 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 No. 80 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 No. 90 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 ...以下省略
提示 此题可使用函数递归调用的方法求解。
二、分析
- 1、递归法;2、交表法 八皇后问题经典解析:
八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使 其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。 高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。计算机发明后,有多种方法可 以解决此问题。
摘自百度百科
解题思路:深度搜索加记忆数组*因为皇后不能处于同一行,同一列,同一斜线(即主对角线和副对角线),所以可以判断出8个皇后分别各占一行*不妨假设从第一行开始,行数依次加一确定每一行皇后的位置,在下面的程序中cur代表行号,因为我们依次让*行号加一,所以不会存在行号重叠的现象,接下来只需判断列数和对角线没有发生重叠即可,这里,我们用一个记*忆状态的数组(vis[][])来存储列和对角线的状态,每次确定一个皇后的位置,首先判断其对应的列和对角线是否*染色,如果没有染色,则该位置有效,并染色,这样就不会出现列和对角线重叠的问题.下面重点讲解一下对角线,其原理可用下图说明: (格子(i-j)的值标示了主对角线)同理读者自行可以推出 (格子(i+j)的值标示了副对角线)又因为主对角线的值有为负数的情况,所以我们在标记的时候应该加>=7的数,所有值都加了>=7所以标记的效果并没有改变- 简化版代码:
1 #include2 using namespace std; 3 bool vis[3][30];//记忆数组判断列,主对角线,副对角线是否被占 4 int ans=0; 5 void dfs(int cur) 6 { 7 if(cur==9)//如果当前行数超过8(表明八个皇后已经放好)则结果加一,返回继续递归 8 { 9 ans++; 10 return ; 11 } 12 //vis[0][i]判断列,vis[i][cur-i+8]判断主对角线,vis[2][cur+i]判断副对角线 13 for(int i=1;i<=8;i++)if(!vis[0][i]&&!vis[1][cur-i+8]&&!vis[2][cur+i]) 14 { 15 vis[0][i]=vis[1][cur-i+8]=vis[2][cur+i]=true; 16 dfs(cur+1);//深度搜索 17 vis[0][i]=vis[1][cur-i+8]=vis[2][cur+i]=false; 18 } 19 } 20 int main() 21 { 22 dfs(1);//初始化cur为1,即从第一行开始 23 cout<<"有 "< <<" 种结果."<
- 三、AC源代码 1、递归求解
1 #include2 using namespace std; 3 4 bool vis[3][20];//记忆数组判断列,主对角线,副对角线是否被占 5 int ans=0,num=1; 6 int p=0,pos[8]; 7 8 void dfs(int cur); 9 void print(); 10 11 int main() 12 { 13 dfs(1);//初始化cur为0,即从第一行开始 14 return 0; 15 } 16 17 void dfs(int cur) 18 { 19 if(cur>8)//如果当前行数超过8(表明八个皇后已经放好)则结果加一,返回继续递归 20 { 21 ans++; 22 print(); 23 return; 24 } 25 //vis[0][i]判断列,vis[i][cur-i+8]判断主对角线,vis[2][cur+i]判断副对角线 26 for(int i=1;i<=8;i++) 27 if(!vis[0][i]&&!vis[1][cur-i+8]&&!vis[2][cur+i]) 28 { 29 pos[p++]=i; 30 vis[0][i]=vis[1][cur-i+8]=vis[2][cur+i]=true; 31 dfs(cur+1);//深度搜索 32 vis[0][i]=vis[1][cur-i+8]=vis[2][cur+i]=false; 33 p--; 34 } 35 } 36 37 void print() 38 { 39 int i,j; 40 cout<<"No. "< <
- 2、直接交表
1 #include2 int pos[736]={ 1,5,8,6,3,7,2,4,1,6,8,3,7,4,2,5,1,7,4,6,8,2,5,3,1,7,5,8,2,4,6,3,2,4,6,8,3,1,7,5,2,5,7,1,3,8,6,4,2,5,7,4,1,8,6,3,2,6,1,7,4,8,3,5,2,6,8,3,1,4,7,5,2,7,3,6,8,5,1,4,2,7,5,8,1,4,6,3,2,8,6,1,3,5,7,4,3,1,7,5,8,2,4,6,3,5,2,8,1,7,4,6,3,5,2,8,6,4,7,1,3,5,7,1,4,2,8,6,3,5,8,4,1,7,2,6,3,6,2,5,8,1,7,4,3,6,2,7,1,4,8,5,3,6,2,7,5,1,8,4,3,6,4,1,8,5,7,2,3,6,4,2,8,5,7,1,3,6,8,1,4,7,5,2,3,6,8,1,5,7,2,4,3,6,8,2,4,1,7,5,3,7,2,8,5,1,4,6,3,7,2,8,6,4,1,5,3,8,4,7,1,6,2,5,4,1,5,8,2,7,3,6,4,1,5,8,6,3,7,2,4,2,5,8,6,1,3,7,4,2,7,3,6,8,1,5,4,2,7,3,6,8,5,1,4,2,7,5,1,8,6,3,4,2,8,5,7,1,3,6,4,2,8,6,1,3,5,7,4,6,1,5,2,8,3,7,4,6,8,2,7,1,3,5,4,6,8,3,1,7,5,2,4,7,1,8,5,2,6,3,4,7,3,8,2,5,1,6,4,7,5,2,6,1,3,8,4,7,5,3,1,6,8,2,4,8,1,3,6,2,7,5,4,8,1,5,7,2,6,3,4,8,5,3,1,7,2,6,5,1,4,6,8,2,7,3,5,1,8,4,2,7,3,6,5,1,8,6,3,7,2,4,5,2,4,6,8,3,1,7,5,2,4,7,3,8,6,1,5,2,6,1,7,4,8,3,5,2,8,1,4,7,3,6,5,3,1,6,8,2,4,7,5,3,1,7,2,8,6,4,5,3,8,4,7,1,6,2,5,7,1,3,8,6,4,2,5,7,1,4,2,8,6,3,5,7,2,4,8,1,3,6,5,7,2,6,3,1,4,8,5,7,2,6,3,1,8,4,5,7,4,1,3,8,6,2,5,8,4,1,3,6,2,7,5,8,4,1,7,2,6,3,6,1,5,2,8,3,7,4,6,2,7,1,3,5,8,4,6,2,7,1,4,8,5,3,6,3,1,7,5,8,2,4,6,3,1,8,4,2,7,5,6,3,1,8,5,2,4,7,6,3,5,7,1,4,2,8,6,3,5,8,1,4,2,7,6,3,7,2,4,8,1,5,6,3,7,2,8,5,1,4,6,3,7,4,1,8,2,5,6,4,1,5,8,2,7,3,6,4,2,8,5,7,1,3,6,4,7,1,3,5,2,8,6,4,7,1,8,2,5,3,6,8,2,4,1,7,5,3,7,1,3,8,6,4,2,5,7,2,4,1,8,5,3,6,7,2,6,3,1,4,8,5,7,3,1,6,8,5,2,4,7,3,8,2,5,1,6,4,7,4,2,5,8,1,3,6,7,4,2,8,6,1,3,5,7,5,3,1,6,8,2,4,8,2,4,1,7,5,3,6,8,2,5,3,1,7,4,6,8,3,1,6,2,5,7,4,8,4,1,3,6,2,7,5}; 3 int main() 4 { 5 int i,j,n=92; 6 while(n--) 7 { 8 printf("No. %d\n",92-n); 9 for(i=0;i<8;i++) 10 { 11 for(j=0;j<8;j++) 12 if(i==pos[(91-n)*8+j]-1) 13 printf("1 "); 14 else 15 printf("0 "); 16 printf("\n"); 17 } 18 } 19 return 0; 20 }